Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 271: 106908, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38608566

RESUMO

Short chain per- and polyfluoroalkyl substances (PFAS), including hexafluoropropylene oxide dimer acid (GenX) and perfluorobutane sulfonate (PFBS), are replacement chemicals for environmentally persistent, long-chain PFAS. Although GenX and PFBS have been detected in surface and ground water worldwide, few studies provide information on the metabolic alterations or risks associated with their exposures. In this study, larval zebrafish were used to investigate the toxicity of early-life exposure to GenX or PFBS. Zebrafish were chronically exposed from 4 h post-fertilization (hpf) to 6 days post-fertilization (dpf) to 150 µM GenX or 95.0 µM PFBS. Ultra-high-performance liquid chromatography paired with high-resolution mass spectrometry was used to quantify uptake of GenX and PFBS into zebrafish larvae and perform targeted and untargeted metabolomics. Our results indicate that PFBS was 20.4 % more readily absorbed into the zebrafish larvae compared to GenX. Additionally, PFBS exposure significantly altered 13 targeted metabolites and 21 metabolic pathways, while GenX exposure significantly altered 1 targeted metabolite and 17 metabolic pathways. Exposure to GenX, and to an even greater extent PFBS, resulted in a number of altered metabolic pathways in the amino acid metabolism, with other significant alterations in the carbohydrate, lipid, cofactors and vitamins, nucleotide, and xenobiotics metabolisms. Our results indicate that GenX and PFBS impact the zebrafish metabolome, with implications of global metabolic dysregulation, particularly in metabolic pathways relating to growth and development.

2.
Water Res ; 252: 121146, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306753

RESUMO

Nearly all per- and polyfluoroalkyl substances (PFAS) biotransformation studies reported to date have been limited to laboratory-scale batch reactors. The fate and transport of PFAS in systems that more closely represent field conditions, i.e., in saturated porous media under flowing conditions, remain largely unexplored. This study investigated the biotransformation of 6:2 fluorotelomer sulfonate (6:2 FTS), a representative PFAS of widespread environmental occurrence, in one-dimensional water-saturated flow-through columns packed with soil obtained from a PFAS-contaminated site. The 305-day column experiments demonstrated that 6:2 FTS biotransformation was rate-limited, where a decrease in pore-water velocity from 3.7 to 2.4 cm/day, resulted in a 21.7-26.1 % decrease in effluent concentrations of 6:2 FTS and higher yields (1.0-1.4 mol% vs. 0.3 mol%) of late-stage biotransformation products (C4C7 perfluoroalkyl carboxylates). Flow interruptions (2 and 7 days) were found to enhance 6:2 FTS biotransformation during the 6-7 pore volumes following flow resumption. Model-fitted 6:2 FTS column biotransformation rates (0.039-0.041 cmw3/gs/d) were ∼3.5 times smaller than those observed in microcosms (0.137 cmw3/gs/d). Additionally, during column experiments, planktonic microbial communities remained relatively stable, whereas the composition of the attached microbial communities shifted along the flow path, which may have been attributed to oxygen availability and the toxicity of 6:2 FTS and associated biotransformation products. Genus Pseudomonas dominated in planktonic microbial communities, while in the attached microbial communities, Rhodococcus decreased and Pelotomaculum increased along the flow path, suggesting their potential involvement in early- and late-stage 6:2 FTS biotransformation, respectively. Overall, this study highlights the importance of incorporating realistic environmental conditions into experimental systems to obtain a more representative assessment of in-situ PFAS biotransformation.


Assuntos
Fluorocarbonos , Microbiota , Poluentes Químicos da Água , Fluorocarbonos/análise , Biotransformação , Alcanossulfonatos/metabolismo , Água , Poluentes Químicos da Água/análise
3.
Water Res ; 249: 120941, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070347

RESUMO

Although 6:2 fluorotelomer sulfonate (6:2 FTS) is a common ingredient in aqueous film-forming foam (AFFF) formulations, its environmental fate at AFFF-impacted sites remains poorly understood. This study investigated the biotransformation of 6:2 FTS in microcosms prepared with soils collected from two AFFF-impacted sites; the former Loring Air Force Base (AFB) and Robins AFB. The half-life of 6:2 FTS in Loring soil was 43.3 days; while >60 mol% of initially spiked 6:2 FTS remained in Robins soil microcosms after a 224-day incubation. Differences in initial sulfate concentrations and the depletion of sulfate over the incubation likely contributed to the different 6:2 FTS biotransformation rates between the two soils. At day 224, stable transformation products, i.e., C4C7 perfluoroalkyl carboxylates, were formed with combined molar yields of 13.8 mol% and 1.2 mol% in Loring and Robins soils, respectively. Based on all detected transformation products, the biotransformation pathways of 6:2 FTS in the two soils were proposed. Microbial community analysis suggests that Desulfobacterota microorganisms may promote 6:2 FTS biotransformation via more efficient desulfonation. In addition, species from the genus Sphingomonas, which exhibited higher tolerance to elevated concentrations of 6:2 FTS and its biotransformation products, are likely to have contributed to 6:2 FTS biotransformation. This study demonstrates the potential role of biotransformation processes on the fate of 6:2 FTS at AFFF-impacted sites and highlights the need to characterize site biogeochemical properties for improved assessment of 6:2 FTS biotransformation behavior.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Solo/química , Fluorocarbonos/análise , Biotransformação , Alcanossulfonatos/análise , Alcanossulfonatos/metabolismo , Água/análise , Sulfatos , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 57(51): 21627-21636, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38091497

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous and persistent chemicals associated with multiple adverse health outcomes; however, the biological pathways affected by these chemicals are unknown. To address this knowledge gap, we used data from 264 mother-infant dyads in the Health Outcomes and Measures of the Environment (HOME) Study and employed quantile-based g-computation to estimate covariate-adjusted associations between a prenatal (∼16 weeks' gestation) serum PFAS mixture [perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)] and 14,402 features measured in cord serum. The PFAS mixture was associated with four features: PFOS, PFHxS, a putatively identified metabolite (3-monoiodo-l-thyronine 4-O-sulfate), and an unidentified feature (590.0020 m/z and 441.4 s retention time; false discovery rate <0.20). Using pathway enrichment analysis coupled with quantile-based g-computation, the PFAS mixture was associated with 49 metabolic pathways, most notably amino acid, carbohydrate, lipid and cofactor and vitamin metabolism, as well as glycan biosynthesis and metabolism (P(Gamma) <0.05). Future studies should assess if these pathways mediate associations of prenatal PFAS exposure with infant or child health outcomes, such as birthweight or vaccine response.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Lactente , Criança , Feminino , Gravidez , Humanos , Vitaminas , Metaboloma
5.
Environ Health Perspect ; 131(11): 117008, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966802

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are biopersistent, global pollutants. Although some in vitro and epidemiological studies have explored the neurotoxic potential of perfluorooctane sulfonate (PFOS), a prevalent PFAS congener, it is unknown how developmental PFOS exposure affects neuronal signaling, microglia development, and microglial-neuron communication. OBJECTIVES: We sought to determine the extent to which PFOS exposure disrupts brain health, neuronal activity, and microglia-neuron communication during development. In addition, although PFOS impairs humoral immunity, its impact on innate immune cells, including resident microglia, is unclear. As such, we investigated whether microglia are cellular targets of PFOS, and, if so, whether disrupted microglial development or function could contribute to or is influenced by PFOS-induced neural dysfunction. METHODS: Zebrafish were chronically exposed to either a control solution [0.1% dimethyl sulfoxide (DMSO)], 7µM PFOS, 14µM PFOS, 28µM PFOS, or 64µM perfluorooctanoic acid (PFOA). We used in vivo imaging and gene expression analysis to assess microglial populations in the developing brain and to determine shifts in the microglia state. We functionally challenged microglia state using a brain injury model and, to assess the neuronal signaling environment, performed functional neuroimaging experiments using the photoconvertible calcium indicator calcium-modulated photoactivatable ratiometric integrator (CaMPARI). These studies were paired with optogenetic manipulations of neurons and microglia, an untargeted metabolome-wide association study (MWAS), and behavioral assays. RESULTS: Developmental PFOS exposure resulted in a shift away from the homeostatic microglia state, as determined by functional and morphological differences in exposed larvae, as well as up-regulation of the microglia activation gene p2ry12. PFOS-induced effects on microglia state exacerbated microglia responses to brain injury in the absence of increased cell death or inflammation. PFOS exposure also heightened neural activity, and optogenetic silencing of neurons or microglia independently was sufficient to normalize microglial responses to injury. An untargeted MWAS of larval brains revealed PFOS-exposed larvae had neurochemical signatures of excitatory-inhibitory imbalance. Behaviorally, PFOS-exposed larvae also exhibited anxiety-like thigmotaxis. To test whether the neuronal and microglial phenotypes were specific to PFOS, we exposed embryos to PFOA, a known immunotoxic PFAS. PFOA did not alter thigmotaxis, neuronal activity, or microglial responses, further supporting a role for neuronal activity as a critical modifier of microglial function following PFOS exposure. DISCUSSION: Together, this study provides, to our knowledge, the first detailed account of the effects of PFOS exposure on neural cell types in the developing brain in vivo and adds neuronal hyperactivity as an important end point to assess when studying the impact of toxicant exposures on microglia function. https://doi.org/10.1289/EHP12861.


Assuntos
Lesões Encefálicas , Fluorocarbonos , Animais , Microglia , Peixe-Zebra , Cálcio , Fluorocarbonos/toxicidade
6.
J Expo Sci Environ Epidemiol ; 33(4): 537-547, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414869

RESUMO

BACKGROUND: In response to COVID-19, attention was drawn to indoor air quality and interventions to mitigate airborne COVID-19 transmission. Of developed interventions, Corsi-Rosenthal (CR) boxes, a do-it-yourself indoor air filter, may have potential co-benefits of reducing indoor air contaminant levels. OBJECTIVE: We employed non-targeted and suspect screening analysis (NTA and SSA) to detect and identify volatile and semi-volatile organic contaminants (VOCs and SVOCs) that decreased in indoor air following installation of CR boxes. METHODS: Using a natural experiment, we sampled indoor air before and during installation of CR boxes in 17 rooms inside an occupied office building. We measured VOCs and SVOCs using gas chromatography (GC) high resolution mass spectrometry (HRMS) with electron ionization (EI) and liquid chromatography (LC) HRMS in negative and positive electrospray ionization (ESI). We examined area count changes during vs. before operation of the CR boxes using linear mixed models. RESULTS: Transformed (log2) area counts of 71 features significantly decreased by 50-100% after CR boxes were installed (False Discovery Rate (FDR) p-value < 0.2). Of the significantly decreased features, four chemicals were identified with Level 1 confidence, 45 were putatively identified with Level 2-4 confidence, and 22 could not be identified (Level 5). Identified and putatively identified features (Level ≥4) that declined included disinfectants (n = 1), fragrance and/or food chemicals (n = 9), nitrogen-containing heterocyclic compounds (n = 4), organophosphate esters (n = 1), polycyclic aromatic hydrocarbons (n = 8), polychlorinated biphenyls (n = 1), pesticides/herbicides/insecticides (n = 18), per- and polyfluorinated alkyl substances (n = 2), phthalates (n = 3), and plasticizers (n = 2). IMPACT STATEMENT: We used SSA and NTA to demonstrate that do-it-yourself Corsi-Rosenthal boxes are an effective means for improving indoor air quality by reducing a wide range of volatile and semi-volatile organic contaminants.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Humanos , Poluição do Ar em Ambientes Fechados/análise , Compostos Orgânicos Voláteis/análise , Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/análise
7.
J Expo Sci Environ Epidemiol ; 33(4): 524-536, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37380877

RESUMO

Non-targeted analysis (NTA) and suspect screening analysis (SSA) are powerful techniques that rely on high-resolution mass spectrometry (HRMS) and computational tools to detect and identify unknown or suspected chemicals in the exposome. Fully understanding the chemical exposome requires characterization of both environmental media and human specimens. As such, we conducted a review to examine the use of different NTA and SSA methods in various exposure media and human samples, including the results and chemicals detected. The literature review was conducted by searching literature databases, such as PubMed and Web of Science, for keywords, such as "non-targeted analysis", "suspect screening analysis" and the exposure media. Sources of human exposure to environmental chemicals discussed in this review include water, air, soil/sediment, dust, and food and consumer products. The use of NTA for exposure discovery in human biospecimen is also reviewed. The chemical space that has been captured using NTA varies by media analyzed and analytical platform. In each media the chemicals that were frequently detected using NTA were: per- and polyfluoroalkyl substances (PFAS) and pharmaceuticals in water, pesticides and polyaromatic hydrocarbons (PAHs) in soil and sediment, volatile and semi-volatile organic compounds in air, flame retardants in dust, plasticizers in consumer products, and plasticizers, pesticides, and halogenated compounds in human samples. Some studies reviewed herein used both liquid chromatography (LC) and gas chromatography (GC) HRMS to increase the detected chemical space (16%); however, the majority (51%) only used LC-HRMS and fewer used GC-HRMS (32%). Finally, we identify knowledge and technology gaps that must be overcome to fully assess potential chemical exposures using NTA. Understanding the chemical space is essential to identifying and prioritizing gaps in our understanding of exposure sources and prior exposures. IMPACT STATEMENT: This review examines the results and chemicals detected by analyzing exposure media and human samples using high-resolution mass spectrometry based non-targeted analysis (NTA) and suspect screening analysis (SSA).


Assuntos
Poluentes Ambientais , Expossoma , Humanos , Poluentes Ambientais/análise , Plastificantes/análise , Solo , Poeira/análise , Água/análise
8.
Talanta ; 260: 124653, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178676

RESUMO

Alkenones are among the most widely used paleotemperature biomarkers. Traditionally, alkenones are analyzed using gas chromatography-flame ionization detector (GC-FID), or GC-chemical ionization-mass spectrometry (GC-CI-MS). However, these methods encounter considerable challenges for samples that exhibit matrix interference or low concentrations, with GC-FID requiring tedious sample preparations and GC-CI-MS suffering from nonlinear response and a narrow linear dynamic range. Here we demonstrate that reversed-phase high pressure liquid chromatography-mass spectrometry (HPLC-MS) methods provide excellent resolution, selectivity, linearity and sensitivity for alkenones in complex matrices. We systematically compared the advantages and limitations of three mass detectors (quadrupole, Orbitrap, and quadrupole-time of flight) and two ionization modes (electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)) for alkenone analyses. We demonstrate that ESI performs better than APCI as response factors of various unsaturated alkenones are similar. Among the three mass analyzers tested, orbitrap MS provided the lowest limit of detection (0.4, 3.8 and 8.6 pg injected masses for Orbitrap, qTOF and single quadrupole MS, respectively) and the widest linear dynamic range (600, 20 and 30 folds for Orbitrap, qTOF and single quadrupole MS, respectively). Single quadrupole MS operated in ESI mode provides accurate quantification of proxy measurements over a wide range of injection masses, and with its modest instrument cost, represents an ideal method for routine applications. Analysis of global core-top sediment samples confirmed the efficacy of HPLC-MS methods for the detection and quantification of paleotemperature proxies based on alkenones and their superiority over GC-based methods. The analytical method demonstrated in this study should also allow highly sensitive analyses of diverse aliphatic ketones in complex matrices.

9.
Cell Rep Med ; 4(5): 101019, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37060903

RESUMO

Derivatives of the Chinese traditional medicine indirubin have shown potential for the treatment of cancer through a range of mechanisms. This study investigates the impact of 6'-bromoindirubin-3'-acetoxime (BiA) on immunosuppressive mechanisms in glioblastoma (GBM) and evaluates the efficacy of a BiA nanoparticle formulation, PPRX-1701, in immunocompetent mouse GBM models. Transcriptomic studies reveal that BiA downregulates immune-related genes, including indoleamine 2,3-dioxygenase 1 (IDO1), a critical enzyme in the tryptophan-kynurenine-aryl hydrocarbon receptor (Trp-Kyn-AhR) immunosuppressive pathway in tumor cells. BiA blocks interferon-γ (IFNγ)-induced IDO1 protein expression in vitro and enhances T cell-mediated tumor cell killing in GBM stem-like cell co-culture models. PPRX-1701 reaches intracranial murine GBM and significantly improves survival in immunocompetent GBM models in vivo. Our results indicate that BiA improves survival in murine GBM models via effects on important immunotherapeutic targets in GBM and that it can be delivered efficiently via PPRX-1701, a nanoparticle injectable formulation of BiA.


Assuntos
Glioblastoma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Triptofano/farmacologia , Cinurenina , Oximas/farmacologia , Oximas/uso terapêutico
10.
J Hazard Mater ; 446: 130629, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36630879

RESUMO

Production of 8:2 fluorotelomer alcohol (8:2 FTOH) for industrial and consumer products, including aqueous film-forming foams (AFFFs) used for firefighting, has resulted in its widespread occurrence in the environment. However, the fate of 8:2 FTOH at AFFF-impacted sites remains largely unknown. Using AFFF-impacted soils from two United States Air Force Bases, microcosm experiments evaluated the aerobic biotransformation of 8:2 FTOH (extent and byproduct formation) and the dose-response on microbial communities due to 8:2 FTOH exposure. Despite different microbial communities, rapid transformation of 8:2 FTOH was observed during a 90-day incubation in the two soils, and 7:2 secondary fluorotelomer alcohol (7:2 sFTOH) and perfluorooctanoic acid (PFOA) were detected as major transformation products. Novel transformation products, including perfluoroalkane-like compounds (1H-perfluoroheptane, 1H-perfluorohexane, and perfluoroheptanal) were identified by liquid chromatography-high resolution mass spectrometry (LC-HRMS) and used to develop aerobic 8:2 FTOH biotransformation pathways. Microbial community analysis suggests that species from genus Sphingomonas are potential 8:2 FTOH degraders based on increased abundance in both soils after exposure, and the genus Afipia may be more tolerant to and/or involved in the transformation of 8:2 FTOH at elevated concentrations. These findings demonstrate the potential role of biological processes on PFAS fate at AFFF-impacted sites through fluorotelomer biotransformation.


Assuntos
Fluorocarbonos , Microbiota , Fluorocarbonos/análise , Biotransformação , Hidrocarbonetos Fluorados/análise , Cromatografia Líquida
11.
Chemosphere ; 310: 136723, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36241106

RESUMO

Dioxin and dioxin-like compounds are ubiquitous environmental contaminants that induce toxicity by binding to the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. The zebrafish model has been used to define the developmental toxicity observed following exposure to exogenous AHR ligands such as the potent agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin, TCDD). While the model has successfully identified cellular targets of TCDD and molecular mechanisms mediating TCDD-induced phenotypes, fundamental information such as the body burden produced by standard exposure models is still unknown. We performed targeted gas chromatography (GC) high-resolution mass spectrometry (HRMS) in tandem with non-targeted liquid chromatography (LC) HRMS to quantify TCDD uptake, model the elimination dynamics of TCDD, and determine how TCDD exposure affects the zebrafish metabolome. We found that 50 ppt, 10 ppb, and 1 ppb waterborne exposures to TCDD during early embryogenesis produced environmentally relevant body burdens: 38 ± 4.34, 26.6 ± 1.2, and 8.53 ± 0.341 pg/embryo, respectively, at 24 hours post fertilization. TCDD exposure was associated with the dysregulation of metabolic pathways that are associated with the AHR signaling pathway as well as pathways shown to be affected in mammals following TCDD exposure. In addition, we discovered that TCDD exposure affected several metabolic pathways that are critical for brain development and function including glutamate metabolism, chondroitin sulfate biosynthesis, and tyrosine metabolism. Together, these data demonstrate that existing exposure methods produce environmentally relevant body burdens of TCDD in zebrafish and provide insight into the biochemical pathways impacted by toxicant-induced AHR activation.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Animais , Dibenzodioxinas Policloradas/metabolismo , Peixe-Zebra/metabolismo , Dioxinas/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas de Peixe-Zebra/genética , Transdução de Sinais , Mamíferos/metabolismo
12.
Environ Sci Technol ; 57(1): 415-427, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36562547

RESUMO

The COVID-19 pandemic brought new emphasis on indoor air quality. However, few studies have investigated the impact of air filtration, a COVID-mitigation approach, on indoor air concentrations of semivolatile organic compounds (SVOCs). Using a quasi-experimental design, we quantified the impact of a relatively low-cost "do-it-yourself" air filter (Corsi-Rosenthal Box; CR Box) on indoor air concentrations of 42 PFAS and 24 other SVOCs. We sampled air before (October-November 2021) and during (February-March 2022) deployment of CR Boxes in 17 rooms located in an occupied Providence, Rhode Island office building. We measured sound levels in rooms with CR Boxes operating and not operating. While CR Boxes were deployed, concentrations of seven PFAS (N-EtFOSE, N-EtFOSA, FBSA, PFBS, PFHxS, PFOS, PFNA) were 28-61% lower and concentrations of five phthalates (DMP, DEP, DiBP, BBzP, DCHP) were 29-62% lower. Concentrations of five PFAS and one phthalate increased 23-44% during the intervention period, but the 95% CI of most of these estimates included the null. Daytime sound levels increased 5.0 dB when CR Boxes were operating. These results indicate that CR Boxes reduced exposure to several lower-volatility phthalates and sulfonated PFAS previously reported to be found in office building materials and products, with potentially distracting increases in sound levels.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Ácidos Ftálicos , Humanos , Pandemias , Poeira , COVID-19/prevenção & controle , Ácidos Ftálicos/análise , Compostos Orgânicos
13.
J Hazard Mater ; 442: 129966, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162307

RESUMO

Carbonaceous materials have emerged as a method of persulfate activation for remediation. In this study, persulfate activation using powdered activated carbon (PAC) was demonstrated at temperatures relevant to groundwater (5-25 °C). At room temperature, increasing doses of PAC (1-20 g L-1) led to increased persulfate activation (3.06 × 10-6s-1 to 2.10 × 10-4 with 1 and 20 g L-1 PAC). Activation slowed at lower temperatures (5 and 11 °C); however, substantial (>70 %) persulfate activation was achieved. PAC characterization showed that persulfate is activated at the surface of the PAC, as indicated by an increase in the PAC C:O ratio. Similarly, electron paramagnetic resonance (EPR) spectroscopy studies with a spin trapping agents (5,5-dimethyl-1-pyrroline N-oxide (DMPO)) and 2,2,6,6-tetramethylpiperidine (TEMP) revealed that singlet oxygen was not the main oxidizing species in the reaction. DMPO was oxidized to form 5,5-dimethylpyrrolidone-2(2)-oxyl-(1) (DMPOX), which forms in the presence of strong oxidizers, such as sulfate radicals. The persulfate/PAC system is demonstrated to simultaneously degrade both perfluorooctanoic acid (PFOA) and 1,4-dioxane at room temperature and 11 °C. With a 20 g L-1 PAC and 75 mM persulfate, 80 % and 70 % of the PFOA and 1,4-dioxane, respectively, degraded within 6 h at room temperature. At 11 °C, the same PAC and persulfate doses led to 57% dioxane degradation and 54 % PFOA degradation within 6 h. Coupling PAC with persulfate offers an effective, low-cost treatment for simultaneous destruction of 1,4-dioxane and PFOA.


Assuntos
Ácidos Carboxílicos , Carvão Vegetal , Temperatura , Pós , Sulfatos/química , Dioxanos , Oxirredução , Espectroscopia de Ressonância de Spin Eletrônica , Óxidos
14.
Exposome ; 2(1): osac007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483216

RESUMO

Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.

15.
Environ Sci Technol ; 56(19): 13728-13739, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36127292

RESUMO

The environmental fate of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foams (AFFFs) remains largely unknown, especially under the conditions representative of natural subsurface systems. In this study, the biotransformation of 8:2 fluorotelomer alcohol (8:2 FTOH), a component of new-generation AFFF formulations and a byproduct in fluorotelomer-based AFFFs, was investigated under nitrate-, iron-, and sulfate-reducing conditions in microcosms prepared with AFFF-impacted soils. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-resolution mass spectrometry (HRMS) were employed to identify biotransformation products. The biotransformation was much slower under sulfate- and iron-reducing conditions with >60 mol % of initial 8:2 FTOH remaining after ∼400 days compared to a half-life ranging from 12.5 to 36.5 days under nitrate-reducing conditions. Transformation products 8:2 fluorotelomer saturated and unsaturated carboxylic acids (8:2 FTCA and 8:2 FTUA) were detected under all redox conditions, while 7:2 secondary fluorotelomer alcohol (7:2 sFTOH) and perfluorooctanoic acid (PFOA) were only observed as transformation products under nitrate-reducing conditions. In addition, 1H-perfluoroheptane (F(CF2)6CF2H) and 3-F-7:3 acid (F(CF2)7CFHCH2COOH) were identified for the first time during 8:2 FTOH biotransformation. Comprehensive biotransformation pathways for 8:2 FTOH are presented, which highlight the importance of accounting for redox condition and the related microbial community in the assessment of PFAS transformations in natural environments.


Assuntos
Fluorocarbonos , Álcoois/metabolismo , Biotransformação , Cromatografia Líquida , Ferro , Nitratos , Compostos Orgânicos , Solo , Sulfatos , Espectrometria de Massas em Tandem , Água
16.
PNAS Nexus ; 1(2): pgac050, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35707205

RESUMO

Exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) has been associated with increased risk of Alzheimer's disease (AD), a disease also associated with hyperphosphorylated tau (p-tau) protein aggregation. We investigated whether exposure to DDT can exacerbate tau protein toxicity in Caenorhabditiselegans using a transgenic strain that expresses human tau protein prone to aggregation by measuring changes in size, swim behavior, respiration, lifespan, learning, and metabolism. In addition, we examined the association between cerebrospinal fluid (CSF) p-tau protein-as a marker of postmortem tau burden-and global metabolism in both a human population study and in C. elegans, using the same p-tau transgenic strain. From the human population study, plasma and CSF-derived metabolic features associated with p-tau levels were related to drug, amino acid, fatty acid, and mitochondrial metabolism pathways. A total of five metabolites overlapped between plasma and C. elegans, and four between CSF and C. elegans. DDT exacerbated the inhibitory effect of p-tau protein on growth and basal respiration. In the presence of p-tau protein, DDT induced more curling and was associated with reduced levels of amino acids but increased levels of uric acid and adenosylselenohomocysteine. Our findings in C. elegans indicate that DDT exposure and p-tau aggregation both inhibit mitochondrial function and DDT exposure can exacerbate the mitochondrial inhibitory effects of p-tau aggregation. Further, biological pathways associated with exposure to DDT and p-tau protein appear to be conserved between species.

17.
Environ Int ; 158: 106904, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607043

RESUMO

BACKGROUND: Prenatal exposure to endocrine-disrupting compounds (EDCs) may contribute to endocrine-related diseases and disorders later in life. Nevertheless, data on in utero exposure to these compounds are still scarce. OBJECTIVES: We investigated a wide range of known and novel nonpolar EDCs in full-term human amniotic fluid (AF), a representative matrix of direct fetal exposure. METHODS: Gas chromatography high-resolution mass spectrometry (GC-HRMS) was used for the targeted and non-targeted analysis of chemicals present in nonpolar AF fractions with dioxin-like, (anti-)androgenic, and (anti-)estrogenic activity. The contribution of detected EDCs to the observed activity was determined based on their relative potencies. The multitude of features detected by non-targeted analysis was tentatively identified through spectra matching and data filtering, and further investigated using curated and freely available sources to predict endocrine activity. Prioritized suspects were purchased and their presence in AF was chemically and biologically confirmed with GC-HRMS and bioassay analysis. RESULTS: Targeted analysis revealed 42 known EDCs in AF including dioxins and furans, polybrominated diphenyl ethers, pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Only 30% of dioxin activity and <1% estrogenic and (anti-)androgenic activity was explained by the detected compounds. Non-targeted analysis revealed 14,110 features of which 3,243 matched with library spectra. Our data filtering strategy tentatively identified 121 compounds. Further data mining and in silico predictions revealed in total 69 suspected EDCs. We selected 14 chemicals for confirmation, of which 12 were biologically active and 9 were chemically confirmed in AF, including the plasticizer diphenyl isophthalate and industrial chemical p,p'-ditolylamine. CONCLUSIONS: This study reveals the presence of a wide variety of nonpolar EDCs in direct fetal environment and for the first time identifies novel EDCs in human AF. Further assessment of the source and extent of human fetal exposure to these compounds is warranted.


Assuntos
Disruptores Endócrinos , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Líquido Amniótico/química , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Feminino , Éteres Difenil Halogenados , Humanos , Bifenilos Policlorados/análise , Gravidez
18.
Toxicol Sci ; 185(1): 77-88, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34668567

RESUMO

Humans are exposed to a broad range of organic chemicals. Although targeted gas chromatography mass spectrometry techniques are used to quantify a limited number of persistent organic pollutants and trace organic contaminants in biological samples, nontargeted, high-resolution mass spectrometry (HRMS) methods assess the human exposome more extensively. We present a QuEChERS extraction for targeted and nontargeted analysis of trace organic contaminants using HRMS and compare this method to a traditional, cartridge-based solid-phase extraction (SPE). Following validation using reference and spiked serum samples, the method was applied to plasma samples (n = 75) from the Prospective investigation of Obesity, Energy, and Metabolism (POEM) study. We quantified 44 analytes using targeted analysis and 6247 peaks were detected using the nontargeted approach. Over 90% of targeted analytes were at least 90% recovered using the QuEChERS method in spiked serum samples. In nontargeted analysis, 84% of the peaks were above the method detection limit with area counts up to 3.0 × 105 times greater using the QuEChERS method. Of the targeted compounds, 88% were also identified in the nontargeted analysis. We categorized the 4212 chemicals assigned an identity in using EPA's CompTox Dashboard and 1076 chemicals were found in at least one list. The category with the highest number of chemicals was "androgen or estrogen receptor activity." The findings demonstrate that a QuEChERS technique is suitable for both targeted and nontargeted analysis of trace organic contaminants in biological samples.


Assuntos
Compostos Orgânicos , Extração em Fase Sólida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas/métodos , Estudos Prospectivos , Extração em Fase Sólida/métodos
19.
Environ Health ; 20(1): 37, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794904

RESUMO

BACKGROUND: Exposure to the bioaccumulative pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) has been associated with increased risk of insulin resistance and obesity in humans and experimental animals. These effects appear to be mediated by reduced brown adipose tissue (BAT) thermogenesis, which is regulated by the sympathetic nervous system. Although the neurotoxicity of DDT is well-established, whether DDT alters sympathetic innervation of BAT is unknown. We hypothesized that perinatal exposure to DDT or DDE promotes thermogenic dysfunction by interfering with sympathetic regulation of BAT thermogenesis. METHODS: Pregnant C57BL/6 J mice were administered environmentally relevant concentrations of DDTs (p,p'-DDT and o,p'-DDT) or DDE (p,p'-DDE), 1.7 mg/kg and 1.31 mg/kg, respectively, from gestational day 11.5 to postnatal day 5 by oral gavage, and longitudinal body temperature was recorded in male and female offspring. At 4 months of age, metabolic parameters were measured in female offspring via indirect calorimetry with or without the ß3 adrenergic receptor agonist, CL 316,243. Immunohistochemical and neurochemical analyses of sympathetic neurons innervating BAT were evaluated. RESULTS: We observed persistent thermogenic impairment in adult female, but not male, mice perinatally exposed to DDTs or p,p'-DDE. Perinatal DDTs exposure significantly impaired metabolism in adult female mice, an effect rescued by treatment with CL 316,243 immediately prior to calorimetry experiments. Neither DDTs nor p,p'-DDE significantly altered BAT morphology or the concentrations of norepinephrine and its metabolite DHPG in the BAT of DDTs-exposed mice. However, quantitative immunohistochemistry revealed a 20% decrease in sympathetic axons innervating BAT in adult female mice perinatally exposed to DDTs, but not p,p'-DDE, and 48 and 43% fewer synapses in stellate ganglia of mice exposed to either DDTs or p,p'-DDE, respectively, compared to control. CONCLUSIONS: These data demonstrate that perinatal exposure to DDTs or p,p'-DDE impairs thermogenesis by interfering with patterns of connectivity in sympathetic circuits that regulate BAT.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , DDT/toxicidade , Diclorodifenil Dicloroetileno/toxicidade , Praguicidas/toxicidade , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Animais , Temperatura Corporal/efeitos dos fármacos , DDT/farmacocinética , Diclorodifenil Dicloroetileno/farmacocinética , Feminino , Masculino , Troca Materno-Fetal , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Gânglio Estrelado/efeitos dos fármacos , Distribuição Tecidual
20.
Chemosphere ; 206: 398-404, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29754064

RESUMO

Changes in fluid composition during hydraulic fracturing (HF) for natural gas production can impact well productivity and the water quality of the fluids returning to the surface during productivity. Shale formation conditions can influence the extent of fluid transformation. Oxidizers, such as sodium persulfate, likely play a strong role in fluid transformation. This study investigates the oxidation of 2-butoxyethanol (2-BE), a surfactant used in HF, by sodium persulfate in the presence of heat, pH changes, Fe(II), and shale rock. Increasing temperature and Fe(II) concentrations sped up 2-BE oxidation, while pH played little to no role in 2-BE degradation. The presence of shale rock impeded 2-BE oxidation with increasing shale concentrations causing decreasing pseudo-first-order reaction rate constant to be observed. Over the course of reactions containing shales, dissolved solids were tracked to better understand how reactions with minerals in the shale impact water quality.


Assuntos
Etilenoglicóis/química , Temperatura Alta/uso terapêutico , Fraturamento Hidráulico/métodos , Minerais/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...